login
A209996
Triangle of coefficients of polynomials u(n,x) jointly generated with A209998; see the Formula section.
3
1, 1, 3, 1, 5, 9, 1, 5, 21, 27, 1, 5, 25, 81, 81, 1, 5, 25, 117, 297, 243, 1, 5, 25, 125, 513, 1053, 729, 1, 5, 25, 125, 609, 2133, 3645, 2187, 1, 5, 25, 125, 625, 2853, 8505, 12393, 6561, 1, 5, 25, 125, 625, 3093, 12825, 32805, 41553, 19683, 1, 5, 25, 125
OFFSET
1,3
COMMENTS
Row n starts with 1, 5, 5^2, 5^3,...,5^floor[(n+1)/2] and ends with 3^(n-1).
Denoting the general term by T(n,k), we have T(n,n-1)=A081038.
Alternating row sums: A000975 (signed).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...3
1...5...9
1...5...21...27
1...5...25...81...81
First three polynomials u(n,x): 1, 1 + 3x, 1 + 5x + 9x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209996 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209998 *)
CROSSREFS
Sequence in context: A094353 A298662 A306780 * A340804 A129801 A240222
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 23 2012
STATUS
approved