login
A209936
Triangle of multiplicities of k-th partition of n corresponding to sequence A080577. Multiplicity of a given partition of n into k parts is the number of ways parts can be selected from k distinguishable bins. See the example.
2
1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1, 7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1, 8, 56, 56, 168, 56, 336, 280, 28, 336, 168, 840, 280, 168, 420, 840, 1120, 168, 70, 560, 420, 56, 1
OFFSET
1,2
COMMENTS
Differs from A035206 after position 21.
Differs from A210238 after position 21.
EXAMPLE
1
2, 1
3, 6, 1
4, 12, 6, 12, 1
5, 20, 20, 30, 30, 20, 1
6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1
7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1
Thus for n=3 (third row) the partitions of n=3 are
3+0+0 0+3+0 0+0+3 (multiplicity=3)
2+1+0 2+0+1 1+2+0 1+0+2 0+2+1 0+1+2 (multiplicity=6)
1+1+1 (multiplicity=1)
CROSSREFS
Row lengths give A000041.
Row sums give A088218.
Sequence in context: A225632 A035206 A210238 * A213941 A360858 A181511
KEYWORD
nonn,tabf
AUTHOR
Sergei Viznyuk, Mar 15 2012
STATUS
approved