This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209923 E.g.f. A(x) satisfies: A( x - x^2/2 - Sum_{n>=3} (n-3)!*x^n/n! ) = x. 1
 1, 1, 4, 26, 237, 2778, 39805, 674125, 13174189, 291802238, 7223963796, 197670359937, 5924155984714, 192988681624915, 6789966027406003, 256591956638230811, 10365414610788266136, 445744854494435066418, 20330276980162447348231, 980249560154126513379574 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Compare e.g.f. to the identity: let W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n!, then W( x - Sum_{n>=1} x^(n+1)/(n*(n+1)) ) = x. LINKS EXAMPLE E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 237*x^5/5! +... Let R(x) be the series reversion of e.g.f. A(x), then R(x) begins: R(x) = x - x^2/(1*2) - x^3/(1*2*3) - x^4/(2*3*4) - x^5/(3*4*5) - x^6/(4*5*6) -... PROG (PARI) {a(n)=n!*polcoeff(serreverse(x-x^2/2-sum(m=3, n, (m-3)!*x^m/m!) +x*O(x^n)), n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Sequence in context: A001863 A300698 A244524 * A317339 A304338 A115416 Adjacent sequences:  A209920 A209921 A209922 * A209924 A209925 A209926 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 21:46 EDT 2019. Contains 328315 sequences. (Running on oeis4.)