login
Triangle read by rows: T(n,k), 0 <= k <= n-1, = number of 2-divided binary sequences of length n which are 2-divisible in exactly k ways.
3

%I #44 May 06 2021 08:11:01

%S 0,3,1,4,2,2,6,3,4,3,8,6,6,6,6,14,9,11,10,11,9,20,18,18,18,18,18,18,

%T 36,30,33,30,34,30,33,30,60,56,56,58,56,56,58,56,56,108,99,105,99,105,

%U 100,105,99,105,99,188,186,186,186,186,186,186,186,186,186,186,352,335,344,338,346,335,348,335,346,338,344,335,632,630,630,630,630,630,630,630,630,630,630,630,630,1182,1161,1179,1161,1179,1161,1179,1162,1179,1161,1179,1161,1179,1161,2192,2182,2182,2188,2182,2184,2188,2182,2182,2188,2184,2182,2188,2182,2182

%N Triangle read by rows: T(n,k), 0 <= k <= n-1, = number of 2-divided binary sequences of length n which are 2-divisible in exactly k ways.

%C Computed by _David Scambler_.

%C See A210109 for further information.

%C Omitting the leading column, triangle has mirror symmetry.

%C Speculation: T(2n+1,2)=T(2n+1,1); T(2n,2)=T(2n,1)+T(n,1); T(3n+1,3)=T(3n+1,1); T(3n+2,3)=T(3n+2,1); T(3n,3)=T(3n,1)+T(n,1) and similar "lagged modulo sums" for T(4n+i,4)=T(4n+i,2), 0<i<=3; T(4n,4)=T(4n,2)+T(n,1); T(5n+i,5)=T(5n+i,1), 0<i<=4; T(5n,5)=T(5n,1)+T(n,1). - _R. J. Mathar_, Mar 27 2012

%C Right border appears to be A059966. - _Michel Marcus_, Apr 26 2013

%e Triangle begins:

%e n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14

%e 1 1

%e 2 3 1

%e 3 4 2 2

%e 4 6 3 4 3

%e 5 8 6 6 6 6

%e 6 14 9 11 10 11 9

%e 7 20 18 18 18 18 18 18

%e 8 36 30 33 30 34 30 33 30

%e 9 60 56 56 58 56 56 58 56 56

%e 10 108 99 105 99 105 100 105 99 105 99

%e 11 188 186 186 186 186 186 186 186 186 186 186

%e 12 352 335 344 338 346 335 348 335 346 338 344 335

%e 13 632 630 630 630 630 630 630 630 630 630 630 630 630

%e 14 1182 1161 1179 1161 1179 1161 1179 1162 1179 1161 1179 1161 1179 1161

%e 15 2192 2182 2182 2188 2182 2184 2188 2182 2182 2188 2184 2182 2188 2182 2182...

%Y First column is A000031, second column is conjectured to be A001037. Row sums = 2^n.

%K nonn,tabl

%O 1,2

%A _N. J. A. Sloane_, Mar 21 2012