login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209903 E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers. 1
1, 1, 4, 17, 111, 752, 6893, 64171, 733540, 8751579, 119847295, 1716294780, 27583937857, 460405876777, 8428298492136, 160944930254405, 3309210789416387, 70814345769448444, 1617322515279759301, 38322855872232745163, 960820910852189283072 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..20.

FORMULA

E.g.f.: exp( Sum_{n>=1} x^n/n! / (1-x^n) ).

E.g.f.: exp( Sum_{n>=1} A057625(n)*x^n/n! ).

E.g.f.: exp( Sum_{n>=1} exp(x^n)-1 ).

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +...

Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers:

B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...

then the e.g.f. of this sequence equals the infinite product:

A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)...

The logarithm of the e.g.f. A(x) begins:

log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +...

PROG

(PARI) {a(n)=local(Bell=exp(exp(x+x*O(x^n))-1)); n!*polcoeff(prod(m=1, n, subst(Bell, x, x^m+x*O(x^n))), n)}

(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, x^m/m!/(1-x^m+x*O(x^n))), n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A057625 (log), A209902.

Sequence in context: A232211 A122940 A077386 * A004140 A271612 A240323

Adjacent sequences:  A209900 A209901 A209902 * A209904 A209905 A209906

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 23:07 EST 2016. Contains 279021 sequences.