This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209903 E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers. 1
 1, 1, 4, 17, 111, 752, 6893, 64171, 733540, 8751579, 119847295, 1716294780, 27583937857, 460405876777, 8428298492136, 160944930254405, 3309210789416387, 70814345769448444, 1617322515279759301, 38322855872232745163, 960820910852189283072 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: exp( Sum_{n>=1} x^n/n! / (1-x^n) ). E.g.f.: exp( Sum_{n>=1} A057625(n)*x^n/n! ). E.g.f.: exp( Sum_{n>=1} exp(x^n)-1 ). EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +... Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers: B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +... then the e.g.f. of this sequence equals the infinite product: A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)... The logarithm of the e.g.f. A(x) begins: log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +... PROG (PARI) {a(n)=local(Bell=exp(exp(x+x*O(x^n))-1)); n!*polcoeff(prod(m=1, n, subst(Bell, x, x^m+x*O(x^n))), n)} (PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, x^m/m!/(1-x^m+x*O(x^n))), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A057625 (log), A209902. Sequence in context: A232211 A122940 A077386 * A004140 A240323 A206353 Adjacent sequences:  A209900 A209901 A209902 * A209904 A209905 A209906 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 17 14:56 EST 2014. Contains 252022 sequences.