login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209872 Numbers whose Schwarzian arithmetic derivative is an integer. 1
12, 39, 55, 81, 515, 707, 1067, 1255, 1454, 1691, 1724, 2291, 2627, 2747, 2867, 3408, 4063, 5359, 6583, 7996, 8615, 9375, 11623, 11637, 12047, 12279, 13248, 14359, 14863, 15943, 17136, 20455, 23004, 27644, 32471, 37491, 39424, 49271, 52607, 53973, 53996, 54656 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence lists the numbers n for which the expression (n’’/n’)’-1/2*(n’’/n’)^2 or n’’’/n’-3/2*(n’’/n’)^2 gives an integer lesser than zero, where n’, n’’, n’’’ are the first, second and third arithmetic derivative.

Curiously the integer values of the Schwarzian derivative, tested up to 30 millions, seem to be essentially -1, -3, -4, -13, plus sporadic occurencies of -20 (for 1113823, 2211815, 5824783, 7392799, 10057552, 11698903, 14929895, 17556823, 18135407, 23009599, 25342183), -25 (for 10350000, 12274343, 12857807, 13149527, 13387500, 13732751, 13829927, 14315687, 16159751, 17226047, 18194567, 19549151, 20419127, 20515751, 23314367, 23892551, 24470447, 26204063, 26298551, 27355607, 27530519, 29754407), -36 (for 10223447, 16286940), -43 (for 2191040, 3145719, 5242855, 14789520, 17825503) and -56 (for 1835008, 12386304).

LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..250

H. V. Ovsienko and S. Tabachnikov, What is the Schwarzian Derivative?

EXAMPLE

To compute the Schwarzian derivative of 1724:

1724'=1728; 1728'=6912; 6912'=34560. (6912/1728)'-1/2*(6912/1728)^2 = 4'-1/2*16 = 4-8 = -4 or 34560/1728-3/2*16 = 20-3*8 = 20-24 = -4.

MAPLE

with(numtheory);

A209872:= proc(i)

local a, b, c, d, n, p, pfs;

for n from 2 to i do

  pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);

  pfs:=ifactors(a)[2]; b:=a*add(op(2, p)/op(1, p), p=pfs);

  pfs:=ifactors(b)[2]; c:=b*add(op(2, p)/op(1, p), p=pfs);

  d:=c/a-3/2*(b/a)^2; if d=trunc(d) and d<>0 then lprint(n, d); fi;

od; end:

A209872(10000000);

CROSSREFS

Cf. A003415, A094901-A094903, A145900.

Sequence in context: A259517 A303619 A167712 * A186779 A154266 A236267

Adjacent sequences:  A209869 A209870 A209871 * A209873 A209874 A209875

KEYWORD

nonn

AUTHOR

Paolo P. Lava, Mar 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 08:39 EST 2021. Contains 341745 sequences. (Running on oeis4.)