This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209816 Number of partitions of 2n in which every part is
 1, 3, 7, 15, 30, 58, 105, 186, 318, 530, 863, 1380, 2164, 3345, 5096, 7665, 11395, 16765, 24418, 35251, 50460, 71669, 101050, 141510, 196888, 272293, 374423, 512081, 696760, 943442, 1271527, 1706159, 2279700, 3033772, 4021695, 5311627, 6990367, 9168321 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also, the number of partitions of 3n in which n is the maximal part. Also, the number of partitions of 3n into n parts. - Seiichi Manyama, May 07 2018 Also the number of multigraphical partitions of 2n, i.e., integer partitions that comprise the multiset of vertex-degrees of some multigraph. - Gus Wiseman, Oct 24 2018 Also number of partitions of 2n with at most n parts. Conjugate partitions map one to one to partitions of 2*n with each part <= n. - Wolfdieter Lang, May 21 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A000041(2*n)-A000070(n-1). - Matthew Vandermast, Jul 16 2012 a(n) = Sum_{k=1..n} A008284(2*n, k) = A000041(2*n) - A000070(n-1), for n >= 1. - Wolfdieter Lang, May 21 2019 EXAMPLE The 7 partitions of 6 with parts <4 are as follows: 3+3, 3+2+1, 3+1+1+1 2+2+2, 2+2+1+1, 2+1+1+1+1 1+1+1+1+1+1. Matching partitions of 2 into rationals as described: 1 + 1 1 + 3/3 + 1/3 1 + 1/3 + 1/3 + 1/3 2/3 + 2/3 + 2/3 2/3 + 2/3 + 1/3 + 1/3 2/3 + 1/3 + 1/3 + 1/3 + 1/3 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3. From Seiichi Manyama, May 07 2018: (Start) n | Partitions of 3n into n parts --+------------------------------------------------- 1 | 3; 2 | 5+1, 4+2, 3+3; 3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End) From Gus Wiseman, Oct 24 2018: (Start) The a(1) = 1 through a(4) = 15 partitions:   (11)  (22)    (33)      (44)         (211)   (222)     (332)         (1111)  (321)     (422)                 (2211)    (431)                 (3111)    (2222)                 (21111)   (3221)                 (111111)  (3311)                           (4211)                           (22211)                           (32111)                           (41111)                           (221111)                           (311111)                           (2111111)                           (11111111) (End) MAPLE b:= proc(n, i) option remember;       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))     end: a:= n-> b(2*n, n): seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012 MATHEMATICA f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *) Table[SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}], {x, 0, 2*n}], {n, 1, 20}] (* Vaclav Kotesovec, May 25 2015 *) Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* Vladimir Reshetnikov, Jul 24 2016 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *) PROG (Haskell) a209816 n = p [1..n] (2*n) where    p _          0 = 1    p []         _ = 0    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 14 2013 CROSSREFS Cf. A000041, A000070, A000569, A008284, A025065, A079122, A096373, A147878, A209815, A320911, A320921, A320924. Sequence in context: A058695 A228447 A187100 * A182726 A023610 A062544 Adjacent sequences:  A209813 A209814 A209815 * A209817 A209818 A209819 KEYWORD nonn AUTHOR Clark Kimberling, Mar 13 2012 EXTENSIONS More terms from Alois P. Heinz, Jul 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)