login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209793 Half the number of (n+1)X6 0..2 arrays with every 2X2 subblock having exactly one duplicate clockwise edge difference 1
63300, 11761044, 2167312950, 400252237467, 73890766377408, 13642480312938969, 2518750352620857312, 465030007730370004089, 85856955792123752924724, 15851505408588897810671106, 2926613319470724195205025682 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 5 of A209796

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 117*a(n-1) +16046*a(n-2) -461310*a(n-3) -41690248*a(n-4) +838185919*a(n-5) +37263733439*a(n-6) -765694604535*a(n-7) -13382141786885*a(n-8) +321364657017708*a(n-9) +2098104217159967*a(n-10) -69241805735327928*a(n-11) -128517018078543576*a(n-12) +8709129115010514837*a(n-13) -3468494802113380798*a(n-14) -700368603245220778907*a(n-15) +1097918366326791986076*a(n-16) +38249881277019367763149*a(n-17) -82885453957584747249841*a(n-18) -1477679050506703199996840*a(n-19) +3582295289065080645777908*a(n-20) +41539135165726319546746165*a(n-21) -101993734883143731283690081*a(n-22) -866781561552403343006767069*a(n-23) +2018826395772209491813887071*a(n-24) +13611750304478820781529014134*a(n-25) -28520372689086068572041492757*a(n-26) -162280092698848694950491324828*a(n-27) +291520634476059290564320104306*a(n-28) +1475295967406701632971876156473*a(n-29) -2169961121048984327488204378690*a(n-30) -10236687623863144159526172235403*a(n-31) +11783376804855161753282014450164*a(n-32) +54141369111431768097138884969134*a(n-33) -46589591407728596256741674132830*a(n-34) -217783303537298527601126461642677*a(n-35) +133306781440045365865140258465122*a(n-36) +664827799503260889733752180032703*a(n-37) -272365583756803560888165694739905*a(n-38) -1537257174407032961821202515767658*a(n-39) +385978218317055429280685779706059*a(n-40) +2686679225458054392142060493484229*a(n-41) -352927939490979467614872624551983*a(n-42) -3538593730688886357595470024571200*a(n-43) +158693762106843672238602958751326*a(n-44) +3496707953192547440599945751571573*a(n-45) +48384480903142552673396182803350*a(n-46) -2575506021288291072726617784495748*a(n-47) -127454659502298940357656903692957*a(n-48) +1400915090693069502783915455752061*a(n-49) +93099985963220323728526563241857*a(n-50) -555552327597734924323466692919042*a(n-51) -38316357184343791656582840644779*a(n-52) +157817720300615851244077379672100*a(n-53) +9697916680878993169585799823309*a(n-54) -31356941661649796672271184584347*a(n-55) -1525766261316131112529829339136*a(n-56) +4221660875174791218751179503189*a(n-57) +149433372546777023522642188062*a(n-58) -369752601975483264557434615861*a(n-59) -9422642718209654494532713305*a(n-60) +20000594578056871600802948792*a(n-61) +401829888361187527123789983*a(n-62) -619317950682081103026756420*a(n-63) -11022616921719495980402767*a(n-64) +9643967015220886173644550*a(n-65) +146861428770588720976758*a(n-66) -57353884938704235337372*a(n-67) -554801588254055287096*a(n-68) +40287240447192362128*a(n-69) +468254852850305856*a(n-70)

EXAMPLE

Some solutions for n=4

..1..1..2..0..0..1....2..0..1..0..0..0....1..2..1..1..1..1....1..2..0..1..2..1

..2..2..2..1..2..1....2..2..1..2..0..1....1..0..1..2..1..2....2..2..0..0..0..0

..0..2..0..0..0..0....2..0..0..2..2..2....0..0..2..2..2..2....2..0..0..1..0..1

..1..1..1..2..0..2....1..1..0..2..0..0....0..1..1..2..0..1....1..0..2..2..2..2

..0..2..2..2..0..2....1..0..0..2..0..2....2..1..2..2..0..2....2..2..2..0..1..1

CROSSREFS

Sequence in context: A232264 A209713 A230681 * A115748 A226003 A203921

Adjacent sequences:  A209790 A209791 A209792 * A209794 A209795 A209796

KEYWORD

nonn

AUTHOR

R. H. Hardin Mar 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 02:45 EDT 2019. Contains 323377 sequences. (Running on oeis4.)