login
A209789
Half the number of (n+1) X 2 0..2 arrays with every 2 X 2 subblock having exactly one duplicate clockwise edge difference.
1
30, 204, 1380, 9348, 63300, 428676, 2902980, 19659012, 133130820, 901562244, 6105381060, 41345652228, 279992833860, 1896111996036, 12840473986500, 86955713884932, 588864257262660, 3987789852932484, 27005320351814340
OFFSET
1,1
COMMENTS
Column 1 of A209796.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) + 12*a(n-2).
Conjectures from Colin Barker, Jul 13 2018: (Start)
G.f.: 6*x*(5 + 9*x) / (1 - 5*x - 12*x^2).
a(n) = (2^(-2-n)*(3*(5+sqrt(73))^n*(25+3*sqrt(73)) + (5-sqrt(73))^n*(-75+9*sqrt(73)))) / sqrt(73).
(End)
EXAMPLE
Some solutions for n=4:
..2..0....1..2....0..1....1..1....2..1....2..1....2..1....0..0....0..2....1..2
..1..0....0..2....2..1....2..0....1..1....0..0....0..0....2..1....2..2....0..2
..0..0....2..2....1..1....0..0....0..1....2..0....1..1....2..0....0..1....0..2
..1..0....2..0....2..0....2..2....2..2....0..0....1..0....1..0....0..1....2..2
..2..2....0..0....0..0....2..1....1..2....1..0....2..2....0..0....1..1....0..2
CROSSREFS
Cf. A209796.
Sequence in context: A165030 A165016 A209796 * A280482 A371721 A203617
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2012
STATUS
approved