The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209774 Triangle of coefficients of polynomials v(n,x) jointly generated with A209773; see the Formula section. 3
 1, 2, 3, 2, 7, 8, 3, 12, 25, 21, 3, 19, 56, 84, 55, 4, 26, 103, 227, 269, 144, 4, 36, 169, 486, 848, 833, 377, 5, 45, 259, 914, 2078, 2999, 2518, 987, 5, 58, 372, 1565, 4393, 8277, 10192, 7475, 2584, 6, 69, 518, 2503, 8342, 19420, 31269, 33600, 21881 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Last term in row n: F(2n), where F=A000045, the Fibonacci numbers For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x), v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 2...3 2...7....8 3...12...25...21 3...19...56...84...55 First three polynomials v(n,x): 1, 2 + 3x , 2 + 7x + 8x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209773 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209774 *) CROSSREFS Cf. A209673, A208510. Sequence in context: A210564 A208930 A122076 * A271322 A170842 A014784 Adjacent sequences: A209771 A209772 A209773 * A209775 A209776 A209777 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 05:03 EST 2023. Contains 359850 sequences. (Running on oeis4.)