This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209760 Triangle of coefficients of polynomials v(n,x) jointly generated with A209759; see the Formula section. 3
 1, 1, 3, 1, 3, 8, 1, 3, 11, 21, 1, 3, 11, 38, 55, 1, 3, 11, 41, 124, 144, 1, 3, 11, 41, 150, 389, 377, 1, 3, 11, 41, 153, 533, 1187, 987, 1, 3, 11, 41, 153, 568, 1838, 3549, 2584, 1, 3, 11, 41, 153, 571, 2084, 6168, 10447, 6765, 1, 3, 11, 41, 153, 571, 2128 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Limiting row: A001835 Coefficient of x^n in v(n,x):  even-indexed Fibonacci numbers For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x), v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 1...3 1...3...8 1...3...11...21 1...3...11...38...55 First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 8x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A209759 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A209760 *) CROSSREFS Cf. A208510. Sequence in context: A132476 A103279 A208910 * A046544 A011088 A276228 Adjacent sequences:  A209757 A209758 A209759 * A209761 A209762 A209763 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 02:52 EDT 2019. Contains 328038 sequences. (Running on oeis4.)