login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209754 Triangle of coefficients of polynomials v(n,x) jointly generated with A209753; see the Formula section. 3
1, 3, 1, 5, 6, 1, 9, 16, 10, 1, 15, 39, 38, 15, 1, 25, 84, 117, 76, 21, 1, 41, 172, 308, 286, 136, 28, 1, 67, 337, 744, 894, 612, 225, 36, 1, 109, 642, 1685, 2496, 2228, 1191, 351, 45, 1, 177, 1196, 3646, 6423, 7088, 4978, 2157, 523, 55, 1, 287, 2191 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For a discussion and guide to related arrays, see A208510.

LINKS

Table of n, a(n) for n=1..57.

FORMULA

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),

v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,

where u(1,x)=1, v(1,x)=1.

EXAMPLE

First five rows:

1

3....1

5....6....1

9....16...10...1

15...39...38...15...1

First three polynomials v(n,x): 1, 3 + x , 5 + 6x + x^2.

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];

v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]    (* A209753 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]    (* A209754 *)

CROSSREFS

Cf. A209653, A208510.

Sequence in context: A113445 A108283 A208904 * A140950 A256504 A205713

Adjacent sequences:  A209751 A209752 A209753 * A209755 A209756 A209757

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Mar 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:50 EDT 2019. Contains 328302 sequences. (Running on oeis4.)