

A209644


Łukasiewicz words (without the last zero) for rooted plane trees where nonleaf branching can occur only at the leftmost branch of any level, but nowhere else.


2



0, 1, 20, 11, 300, 210, 120, 111, 4000, 3100, 2200, 1300, 2110, 1210, 1120, 1111, 50000, 41000, 32000, 23000, 14000, 31100, 22100, 13100, 21200, 12200, 11300, 21110, 12110, 11210, 11120, 11111, 600000, 510000, 420000, 330000, 240000, 150000, 411000, 321000, 231000, 141000, 312000, 222000, 132000, 213000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Note: this finite decimal representation works only up to the 511th term, as the 512th such word is already (10,0,0,0,0,0,0,0,0,0).


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..511
A. Karttunen, Corresponding Lukasiewiczwords (with a trailing zero) illustrated on 1, 2, 3, 4, 6, 7, 8, 9, 14, 16, 17th, etc. row in this illustration.
OEIS Wiki, Łukasiewicz words
Index entries for sequences related to Łukasiewicz


FORMULA

a(n) = A071153(A209643(n)).


CROSSREFS

A209643 gives the positions of these terms in A071153 (A014486).
Cf. A071160.
Sequence in context: A247337 A071160 A071153 * A154043 A073868 A215028
Adjacent sequences: A209641 A209642 A209643 * A209645 A209646 A209647


KEYWORD

nonn,base,fini


AUTHOR

Antti Karttunen, Mar 24 2012


STATUS

approved



