OFFSET
1,2
COMMENTS
Row sums for this sequence gives A006578.
In general, by given triangle with (A-B,2*A-B,...,A*n-B,...) in every column, shifted down K-times, we have the row sum s(n)= A*(n*n+K*n+nmodK)/(2*K) - B*(n+nmodK)/K. In this sequence K=2,A=3,B=2, in A152204 K=2,A=2,B=1.
No triangle with primes in every column, shifted down by K>=2 in OEIS, no row sums of it in OEIS.
From Johannes W. Meijer, Sep 28 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A143971.
The antidiagonal sums equal A171452(n+1). (End)
FORMULA
From Johannes W. Meijer, Sep 28 2013: (Start)
T(n, k) = 3*n - 6*k + 4, n >= 1 and 1 <= k <= floor((n+1)/2).
T(n, k) = A143971(n-k+1, k), n >= 1 and 1 <= k <= floor((n+1)/2). (End)
EXAMPLE
Triangle:
1
4
7, 1
10, 4
13, 7, 1
16, 10, 4
19, 13, 7, 1
22, 16, 10, 4
25, 19, 13, 7, 1
28, 22, 16, 10, 4
...
MAPLE
T := (n, k) -> 3*n - 6*k + 4: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..15); # Johannes W. Meijer, Sep 28 2013
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Ctibor O. Zizka, Mar 11 2012
STATUS
approved