login
A209593
T(n,k)=Number of n X n 0..k arrays with every element equal to a diagonal or antidiagonal reflection
14
2, 3, 16, 4, 81, 192, 5, 256, 3645, 9216, 6, 625, 28672, 1476225, 663552, 7, 1296, 140625, 51380224, 996451875, 191102976, 8, 2401, 513216, 791015625, 161128382464, 6053445140625, 82556485632, 9, 4096, 1529437, 7316407296
OFFSET
1,1
COMMENTS
Table starts
......2.........3............4.............5...............6................7
.....16........81..........256...........625............1296.............2401
....192......3645........28672........140625..........513216..........1529437
...9216...1476225.....51380224.....791015625......7316407296......47738317081
.663552.996451875.161128382464.8009033203125.191221621088256.2767247026234327
LINKS
FORMULA
T(n,k) = (k+1) ^ (2n-(n modulo 2)) * ((k+1)*(2k+1)) ^ ((n*n-2n+(n modulo 2))/4)
EXAMPLE
Some solutions for n=3 k=3
..2..0..1....1..0..1....0..0..3....0..2..1....1..2..3....0..1..2....2..2..0
..3..1..0....0..1..0....2..1..0....2..3..2....2..3..0....1..3..2....1..0..2
..0..3..3....1..0..1....1..2..3....3..2..3....2..0..2....2..2..2....1..1..3
CROSSREFS
Row 2 is A000583(n+1)
Sequence in context: A097655 A080749 A070973 * A054496 A351748 A190116
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 10 2012
STATUS
approved