This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209577 Triangle of coefficients of polynomials u(n,x) jointly generated with A209578; see the Formula section. 3
 1, 1, 1, 3, 2, 1, 5, 6, 3, 1, 9, 13, 10, 4, 1, 15, 28, 26, 15, 5, 1, 25, 56, 64, 45, 21, 6, 1, 41, 109, 146, 124, 71, 28, 7, 1, 67, 206, 319, 315, 216, 105, 36, 8, 1, 109, 382, 671, 758, 602, 349, 148, 45, 9, 1, 177, 697, 1372, 1744, 1576, 1056, 533, 201, 55, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x) = x*u(n-1,x) + v(n-1,x), v(n,x) = (x+1)*u(n-1,x) + v(n-1,x) + 1, where u(1,x)=1, v(1,x)=1. The coefficients in the triangle seem to be T(n,m) = sum(k=0,n-m,2 * binomial(m+k, m)*binomial(k, n-k-m) - sum(i=0, n-m-k, binomial(m+k-1,k)*binomial(k,n-m-i-k))) by using the PARI syntax. - Thomas Baruchel, Jun 03 2018 EXAMPLE First five rows:   1;   1,  1;   3,  2,  1;   5,  6,  3,  1;   9, 13, 10,  4,  1; First three polynomials v(n,x): 1, 1 + x, 3 + 2x + x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]   (* A209577 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]   (* A209578 *) CROSSREFS Cf. A209578, A208510. Sequence in context: A132970 A192022 A208608 * A139377 A138483 A110712 Adjacent sequences:  A209574 A209575 A209576 * A209578 A209579 A209580 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 07:19 EDT 2019. Contains 327995 sequences. (Running on oeis4.)