login
A209553
T(n,k)=1/4 the number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having exactly two distinct clockwise edge differences
9
7, 20, 20, 61, 105, 61, 191, 562, 562, 191, 603, 3051, 5075, 3051, 603, 1909, 16582, 46515, 46515, 16582, 1909, 6049, 90186, 425803, 723636, 425803, 90186, 6049, 19173, 490547, 3901194, 11226644, 11226644, 3901194, 490547, 19173, 60777, 2668340
OFFSET
1,1
COMMENTS
Table starts
.....7......20........61.........191...........603............1909
....20.....105.......562........3051.........16582...........90186
....61.....562......5075.......46515........425803.........3901194
...191....3051.....46515......723636......11226644.......174401424
...603...16582....425803....11226644.....294738262......7751834609
..1909...90186...3901194...174401424....7751834609....345350598642
..6049..490547..35741496..2708892873..203828058161..15380031974285
.19173.2668340.327471411.42079740150.5360172454106.685056630399243
LINKS
EXAMPLE
Some solutions for n=4 k=3
..0..2..0..2....0..3..2..3....3..2..3..0....1..0..3..0....0..1..2..1
..2..0..2..0....1..2..3..2....2..3..2..1....2..3..0..3....3..2..1..0
..0..2..0..2....2..1..2..1....1..0..1..2....1..2..1..2....0..1..2..1
..2..0..2..0....3..0..1..0....0..1..2..1....2..1..0..3....3..2..3..0
..0..2..0..2....2..1..2..1....3..2..3..2....1..2..3..0....0..1..2..1
CROSSREFS
Sequence in context: A301808 A128817 A284897 * A037005 A022419 A070413
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 10 2012
STATUS
approved