login
A209517
T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to the number of counterclockwise edge increases.
6
57, 363, 363, 2313, 4995, 2313, 14739, 68937, 68937, 14739, 93921, 951777, 2071311, 951777, 93921, 598491, 13141335, 62340543, 62340543, 13141335, 598491, 3813753, 181445643, 1876947141, 4099186545, 1876947141, 181445643, 3813753, 24302307
OFFSET
1,1
COMMENTS
Table starts
.......57.........363...........2313.............14739.................93921
......363........4995..........68937............951777..............13141335
.....2313.......68937........2071311..........62340543............1876947141
....14739......951777.......62340543........4099186545..........269845393359
....93921....13141335.....1876947141......269845393359........38883961392081
...598491...181445643....56515446141....17769569448759......5607670578249789
..3813753..2505266673..1701725703867..1170258116647953....808953988260058047
.24302307.34590865185.51240520677831.77072446894479573.116711118063701004591
LINKS
EXAMPLE
Some solutions for n=4, k=3:
..0..0..2..1....0..1..0..2....1..2..2..1....2..2..1..2....2..1..0..2
..2..0..2..2....2..0..0..2....2..0..2..1....2..2..1..1....1..1..1..0
..0..2..2..0....2..0..1..0....2..2..1..0....0..2..2..1....1..1..2..1
..2..2..0..1....2..2..0..1....1..2..1..1....0..2..0..2....1..1..1..1
..2..1..2..0....1..2..2..0....1..2..1..2....2..2..0..0....2..2..1..2
CROSSREFS
Column 1 is 3*A138977(n+1).
Column 2 is 3*A138978(n+1).
Column 3 is 3*A138979(n+1).
Sequence in context: A371515 A043399 A038482 * A097200 A211147 A237360
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 09 2012
STATUS
approved