login
A209514
Number of (n+1) X 6 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to the number of counterclockwise edge increases.
2
93921, 13141335, 1876947141, 269845393359, 38883961392081, 5607670578249789, 808953988260058047, 116711118063701004591, 16839058163892016391037, 2429571141623078069193393, 350544958031922413742309279
OFFSET
1,1
COMMENTS
Column 5 of A209517.
LINKS
FORMULA
Empirical: a(n) = 324*a(n-1) -39638*a(n-2) +2563357*a(n-3) -99678028*a(n-4) +2422898292*a(n-5) -34567057037*a(n-6) +163766577224*a(n-7) +3953924057449*a(n-8) -93675129477373*a(n-9) +854871679192289*a(n-10) -1010373911023728*a(n-11) -64538210724303463*a(n-12) +764374153831286079*a(n-13) -3535065266008603304*a(n-14) -6650643116239888763*a(n-15) +199768366558925441548*a(n-16) -1284148298178750659633*a(n-17) +3495370310405908549678*a(n-18) +5139427984716424810557*a(n-19) -82029696703016595502402*a(n-20) +302943529549060965986102*a(n-21) -320615792113076602489829*a(n-22) -1657115306226758776142290*a(n-23) +8068597001512785547875111*a(n-24) -13376217033818619829173627*a(n-25) -9007290254306026204266458*a(n-26) +87525051383286874503714054*a(n-27) -162580189876993465142148189*a(n-28) +23526211232093279356308963*a(n-29) +471208575610332879083549054*a(n-30) -918944556261933248058181605*a(n-31) +402135296399868083040981818*a(n-32) +1334981348496023848871530178*a(n-33) -2739540886500718334150601911*a(n-34) +1609967371243683762919217023*a(n-35) +1882070046189479230490753891*a(n-36) -4415531565390270910566613371*a(n-37) +3085987321444282689953699174*a(n-38) +916894807671605192280872310*a(n-39) -3639508264916860485380515902*a(n-40) +2970759642505242646432741014*a(n-41) -466131808362506395905349106*a(n-42) -1230709325386156350054319773*a(n-43) +1255759127222850231908023237*a(n-44) -505110331437242495850314616*a(n-45) -31481521623588192528299729*a(n-46) +140514212979011798478024679*a(n-47) -65945478796808695137450941*a(n-48) +5726585916010713017059660*a(n-49) +7470898741842649706262107*a(n-50) -3412956298232072922390919*a(n-51) +262494321509038838681984*a(n-52) +252280220540757965905947*a(n-53) -85247779462303361462547*a(n-54) +942599705828866593645*a(n-55) +5083312623447553525866*a(n-56) -934266517778337886983*a(n-57) -88236191430021863513*a(n-58) +47794432036883982587*a(n-59) -2650969818401554694*a(n-60) -1032043188102588840*a(n-61) +146160755946991318*a(n-62) +8298202145933886*a(n-63) -2578547059692528*a(n-64) +30285581771328*a(n-65) +20074979570912*a(n-66) -760305563920*a(n-67) -59583322016*a(n-68) +2714449792*a(n-69) +23077376*a(n-70).
EXAMPLE
Some solutions for n=4:
..2..0..2..2..1..0....2..1..0..0..1..1....1..2..0..1..2..1....1..0..0..0..0..1
..2..2..1..1..2..1....1..0..2..2..0..0....2..2..0..0..1..2....2..1..0..0..2..0
..0..2..1..2..0..2....2..1..0..2..2..2....2..0..0..1..0..1....0..2..1..0..2..2
..2..1..0..1..2..2....1..0..0..2..2..2....1..2..2..0..1..2....1..0..2..1..0..2
..1..0..1..2..0..2....0..0..0..2..0..2....2..2..1..2..0..1....2..1..0..2..1..0
CROSSREFS
Cf. A209517.
Sequence in context: A234215 A200216 A126708 * A029754 A258892 A204473
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 09 2012
STATUS
approved