login
a(n) = Pell(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.
4

%I #13 Jan 03 2018 15:05:45

%S 1,-3,6,-15,36,0,210,-1014,1224,-2955,0,0,41580,-200766,484692,0,

%T 1412496,0,8232630,-39750654,0,-231683790,0,0,1630019160,-3935214363,

%U 19000895772,-22936110135,110745336312,0,0,-1558305137094,1881040698144,0,0,0,63900011068740

%N a(n) = Pell(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.

%C Compare g.f. to the Lambert series of A132973: 1 - 3*Sum_{n>=0} x^(6*n+1)/(1+x^(6*n+1)) - x^(6*n+5)/(1+x^(6*n+5)).

%H G. C. Greubel, <a href="/A209450/b209450.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 - 3*Sum_{n>=0} Pell(6*n+1)*x^(6*n+1)/(1+A002203(6*n+1)*x^(6*n+1)-x^(12*n+2)) - Pell(6*n+5)*x^(6*n+5)/(1+A002203(6*n+5)*x^(6*n+5)-x^(12*n+10)), where A002203(n) = Pell(n-1) + Pell(n+1).

%e G.f.: A(x) = 1 - 3*x + 6*x^2 - 15*x^3 + 36*x^4 + 210*x^6 - 1014*x^7 +...

%e where A(x) = 1 - 1*3*x + 2*3*x^2 - 5*3*x^3 + 12*3*x^4 + 70*3*x^6 - 169*6*x^7 + 408*3*x^8 +...+ Pell(n)*A132973(n)*x^n +...

%e The g.f. is also given by the identity:

%e A(x) = 1 - 3*( 1*x/(1+2*x-x^2) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 5741*x^11/(1+16238*x^11-x^22) + 33461*x^13/(1+94642*x^13-x^26) - 1136689*x^17/(1+3215042*x^17-x^34) +...).

%t A132973[n_]:= SeriesCoefficient[EllipticTheta[2, Pi/4, q^(1/2)]^3/EllipticTheta[2, Pi/4, q^(3/2)]/2, {q, 0, n}]; Join[{1}, Table[ Fibonacci[n, 2]*A132973[n],{n,1,50}]] (* _G. C. Greubel_, Jan 02 2018 *)

%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}

%o {A002203(n)=Pell(n-1)+Pell(n+1)}

%o {a(n)=polcoeff(1 - 3*sum(m=0,n, Pell(6*m+1)*x^(6*m+1)/(1+A002203(6*m+1)*x^(6*m+1)-x^(12*m+2) +x*O(x^n)) - Pell(6*m+5)*x^(6*m+5)/(1+A002203(6*m+5)*x^(6*m+5)-x^(12*m+10) +x*O(x^n)) ),n)}

%o for(n=0,61,print1(a(n),", "))

%Y Cf. A132973, A205970, A209449, A209451, A204270, A000129 (Pell), A002203.

%K sign

%O 0,2

%A _Paul D. Hanna_, Mar 10 2012