OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A000118: 1 + 8*Sum_{n>=1} n*x^n/(1+(-x)^n).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1 + 8*Sum_{n>=1} Pell(n)*n*x^n/(1 + A002203(n)*(-x)^n + (-1)^n*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + 8*x + 48*x^2 + 160*x^3 + 288*x^4 + 1392*x^5 + 6720*x^6 +...
where A(x) = 1 + 1*8*x + 2*24*x^2 + 5*32*x^3 + 12*24*x^4 + 29*48*x^5 + 70*96*x^6 + 169*64*x^7 + 408*24*x^8 +...+ Pell(n)*A000118(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 8*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1+6*x^2+x^4) + 5*3*x^3/(1-14*x^3-x^6) + 12*4*x^4/(1+34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 70*6*x^6/(1+198*x^6+x^12) + 169*7*x^7/(1-478*x^7-x^14) +...).
MATHEMATICA
A000118[n_]:= If[n < 1, Boole[n == 0], 8*Sum[If[Mod[d, 4] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A000118[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2012
STATUS
approved