login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209441 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(5*n) * Product_{k=1..n} (1 - 1/A(x)^k). 6
1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, 30031677, 334334789, 3775539592, 43145236171, 498018527632, 5798165437701, 68009060597311, 802908842472516, 9533509909631074, 113774810189434083, 1363985826416978416, 16418865502303963429, 198369001060550654651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare the g.f. to the identity:

G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)

which holds for all power series G(x) such that G(0)=1.

LINKS

Table of n, a(n) for n=0..21.

FORMULA

G.f. satisfies: 1+x = A(y) where y = x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15.

G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+11)/2) * Product_{k=1..n} (A(x)^k - 1).

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 260*x^4 + 2463*x^5 + 24656*x^6 +...

The g.f. satisfies:

x = (A(x)-1)/A(x)^6 + (A(x)-1)*(A(x)^2-1)/A(x)^13 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^21 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^30 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^40 +...

MATHEMATICA

nmax = 20; aa = ConstantArray[0, nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^5, {m, 1, k}], {k, 1, j}], {x, 0, j}]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Dec 01 2014 *)

CoefficientList[1+InverseSeries[Series[x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Dec 01 2014 *)

PROG

(PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15 +x^2*O(x^n)), n))}

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(5*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A001002, A181997, A181998, A209442, A214695 (variant).

Sequence in context: A091527 A201200 A102307 * A052658 A220442 A215698

Adjacent sequences:  A209438 A209439 A209440 * A209442 A209443 A209444

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.