login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209437 Table of T(m,n), read by antidiagonals, is the number of subsets of {1,...,n} which contain two elements whose difference is m. 4
1, 0, 3, 0, 2, 8, 0, 0, 7, 19, 0, 0, 4, 17, 43, 0, 0, 0, 14, 39, 94, 0, 0, 0, 8, 37, 88, 201, 0, 0, 0, 0, 28, 83, 192, 423, 0, 0, 0, 0, 16, 74, 181, 408, 880, 0, 0, 0, 0, 0, 56, 175, 387, 855, 1815, 0, 0, 0, 0, 0, 32, 148, 377, 824, 1775, 3719, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

m offset is 1, n offset is 2 so 1st entry is T(1,2).

LINKS

G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened

M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301.

FORMULA

T(m,n) = 2^n - Product_{i=0,...,m-1} F(floor((n + i)/m + 2)) where F(n) is the n-th Fibonacci number.

EXAMPLE

Table begins:

1, 3, 8, 19, 43, 94, 201, 423, 880, ...

0, 2, 7, 17, 39, 88, 192, 408, 855, ...

0, 0, 4, 14, 37, 83, 181, 387, 824, ...

0, 0, 0,  8, 28, 74, 175, 377, 799, ...

0, 0, 0,  0, 16, 56, 148, 350, 781, ...

0, 0, 0,  0,  0, 32, 112, 296, 700, ...

0, 0, 0,  0,  0,  0,  64, 224, 592, ...

0, 0, 0,  0,  0,  0,   0, 128, 448, ...

0, 0, 0,  0,  0,  0,   0,   0, 256, ...

0, 0, 0,  0,  0,  0,   0,   0,   0, ...

0, 0, 0,  0,  0,  0,   0,   0,   0, ...

.......................................

T(2,3) is the number of subsets of {1,2,3} containing two elements whose difference is two. There are 2 of these: {1,3} and {1,2,3} so T(2,3) = 2.

MATHEMATICA

T[m_, n_] := 2^n - Product[Fibonacci[Floor[(n + i)/m + 2]], {i, 0, m - 1}]; Table[T[i, j + 2], {i, 1, 10}, {j, 0, 10}]; Flatten[Table[T[i - j + 1, j + 2], {i, 0, 20}, {j, 0, i}]]

CROSSREFS

Cf. A209434, A209435, A209436.

Sequence in context: A302528 A303410 A126671 * A240660 A099095 A061980

Adjacent sequences:  A209434 A209435 A209436 * A209438 A209439 A209440

KEYWORD

nonn,tabl

AUTHOR

David Nacin, Mar 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 21:10 EST 2018. Contains 317116 sequences. (Running on oeis4.)