login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209398 Number of subsets of {1,...,n} containing two elements whose difference is 2. 4
0, 0, 0, 2, 7, 17, 39, 88, 192, 408, 855, 1775, 3655, 7478, 15228, 30898, 62511, 126177, 254223, 511472, 1027840, 2063600, 4140015, 8300767, 16635087, 33324462, 66736764, 133615658, 267461287, 535294673, 1071191415, 2143357000, 4288290240, 8579130888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also, the number of bitstrings of length n containing either 101 or 111.

LINKS

David Nacin, Table of n, a(n) for n = 0..500

Index entries for linear recurrences with constant coefficients, signature (3,- 2,1,-1,-2).

FORMULA

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=7.

a(n) = 2^n - F(2+floor(n/2))*F(floor(2+(n+1)/2)).

a(n) = 2^n - A006498(n+2).

G.f.: (2*x^3 + 1*x^4)/(1 - 3*x + 2*x^2 - x^3 + x^4 + 2*x^5);

x^3(2 + x) / ((1 - 2*x) (1 + x^2) (1 - x - x^2)).

EXAMPLE

For n=3 the subsets containing 1 and 3 are {1,3} and {1,2,3} so a(3)=2.

MATHEMATICA

Table[2^n -

  Fibonacci[Floor[n/2] + 2]*Fibonacci[Floor[(n + 1)/2] + 2], {n, 0,

  30}]

LinearRecurrence[{3, -2, 1, -1, -2}, {0, 0, 0, 2, 7}, 40]

PROG

(Python)

#Through Recurrence

def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:7}):

.if n in adict:

..return adict[n]

.adict[n]=3*a(n-1)-2*a(n-2)+a(n-3)-a(n-4)-2*a(n-5)

.return adict[n]

(Python)

#Returns the actual list of valid subsets

def contains101(n):

.patterns=list()

.for start in range (1, n-1):

..s=set()

..for i in range(3):

...if (1, 0, 1)[i]:

....s.add(start+i)

..patterns.append(s)

.s=list()

.for i in range(2, n+1):

..for temptuple in comb(range(1, n+1), i):

...tempset=set(temptuple)

...for sub in patterns:

....if sub <= tempset:

.....s.append(tempset)

.....break

.return s

#Counts all such subsets using the preceding function

def countcontains101(n):

.return len(contains101(n))

CROSSREFS

Cf. A006498, A209399, A209400.

Sequence in context: A154117 A173769 A067038 * A175660 A175120 A239357

Adjacent sequences:  A209395 A209396 A209397 * A209399 A209400 A209401

KEYWORD

nonn,easy

AUTHOR

David Nacin, Mar 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.