login
A209376
1/4 the number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having distinct edge sums.
1
8, 17, 34, 80, 170, 410, 882, 2138, 4610, 11186, 24130, 58562, 126338, 306626, 661506, 1605506, 3463682, 8406530, 18136066, 44017154, 94961666, 230476802, 497225730, 1206792194, 2603507714, 6318845954, 13632143362, 33085906946, 71378829314
OFFSET
1,1
COMMENTS
Column 2 of A209382.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 4*a(n-4) + 4*a(n-5).
Empirical g.f.: x*(8 + 9*x - 31*x^2 - 8*x^3 + 20*x^4) / ((1 - x)*(1 - 6*x^2 + 4*x^4)). - Colin Barker, Jul 09 2018
EXAMPLE
Some solutions for n=4:
..1..2..2....2..1..2....1..0..1....0..1..0....0..0..2....0..2..2....2..1..2
..0..0..1....2..0..2....2..0..2....2..2..0....2..1..2....0..1..0....2..0..0
..1..2..2....1..0..1....1..0..1....0..1..0....0..0..2....0..2..2....2..1..2
..0..0..1....2..2..2....2..0..2....0..2..2....2..1..2....0..1..0....0..0..2
..1..2..2....0..1..0....2..1..2....0..1..0....2..0..2....2..2..2....2..1..2
CROSSREFS
Cf. A209382.
Sequence in context: A077221 A226601 A106648 * A159696 A049713 A297728
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 07 2012
STATUS
approved