login
A209345
Number of 4-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal
2
4, 15, 35, 72, 128, 205, 311, 448, 618, 829, 1083, 1382, 1734, 2141, 2605, 3134, 3730, 4395, 5137, 5958, 6860, 7851, 8933, 10108, 11384, 12763, 14247, 15844, 17556, 19385, 21339, 23420, 25630, 27977, 30463, 33090, 35866, 38793, 41873, 45114, 48518, 52087
OFFSET
1,1
COMMENTS
Row 4 of A209344.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical g.f.: x*(4 + 3*x + 2*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x + x^2)). - Colin Barker, Mar 07 2018
EXAMPLE
Some solutions for n=10:
-5 -5 -9 -5 -7 -2 -9 -10 -9 -4 -7 -10 -4 -6 -7 -7
1 -3 5 0 1 -1 5 5 -4 1 -1 -3 -4 1 7 -6
-3 -2 -5 4 4 4 -6 -3 3 0 6 10 3 -2 -7 10
7 10 9 1 2 -1 10 8 10 3 2 3 5 7 7 3
CROSSREFS
Cf. A209344.
Sequence in context: A113693 A211537 A213420 * A323452 A330204 A190093
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 06 2012
STATUS
approved