login
Table, by rows, of the maximum number of minimal codewords in an [n,k]-code.
3

%I #25 Oct 23 2020 11:46:23

%S 1,1,2,1,3,3,1,3,6,4,1,3,6,10,5,1,3,7,11,15,6,1,3,7,14,17,21,7,1,3,7,

%T 14,22,25,28,8,1,3,7,15,26,33,36,36,9,1,3,7,15,30,42,48,48,45,10,1,3,

%U 7,15,30,52,66,69,63,55,11,1,3,7,15,30,54,90,103,95,82,66,12

%N Table, by rows, of the maximum number of minimal codewords in an [n,k]-code.

%H Michel Marcus, <a href="/A209334/b209334.txt">Table of n, a(n) for n = 1..120</a> (rows 1..15)

%H A. Alahmadi, R. E. L. Aldred, R. dela Cruz, P. Solé, C. Thomassen, <a href="http://arxiv.org/abs/1203.0728">The maximum number of minimal codewords in an [n,k]-code</a>, arXiv:1203.0728v1 [cs.IT], Mar 4, 2012.

%H Romar dela Cruz and Sascha Kurz, <a href="https://arxiv.org/abs/2010.10762">On the maximum number of minimal codewords</a>, arXiv:2010.10762 [cs.IT], 2020. See Table 1 p. 12.

%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/Me179.pdf">Covering Arrays and Intersecting Codes</a>, J. Combinatorial Designs, 1 (1993), 51-63.

%e Triangle begins:

%e 1

%e 1 2

%e 1 3 3

%e 1 3 6 4

%e 1 3 6 10 5

%e 1 3 7 11 15 6

%e 1 3 7 14 17 21 7

%e 1 3 7 14 22 25 28 8

%e 1 3 7 15 26 33 36 36 9

%K nonn,tabl

%O 1,3

%A _Jonathan Vos Post_, Mar 06 2012

%E Rows 1 and 2 inserted, and more rows added by _Michel Marcus_, Oct 23 2020 from dela Cruz and Kurz article