OFFSET
0,3
EXAMPLE
By definition, the coefficients a(n) satisfy:
1/(1-x) = 1 + 1*(cos(x)-sin(x))*x + 4*(cos(2*x)-sin(2*x))^2*x^2/2! + 57*(cos(3*x)-sin(3*x))^3*x^3/3! + 2072*(cos(4*x)-sin(4*x))^4*x^4/4! + 147925*(cos(5*x)-sin(5*x))^5*x^5/5! +...+ a(n)*(cos(n*x)-sin(n*x))^n*x^n/n! +...
PROG
(PARI) {a(n)=local(A=[1, 1], N); for(i=1, n, A=concat(A, 0); N=#A; A[N]=(N-1)!*(1-Vec(sum(m=0, N-1, A[m+1]*x^m/m!*(cos(m*x+x*O(x^N))-sin(m*x+x*O(x^N)))^m))[N])); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 19 2013
STATUS
approved