login
A209313
Total number of parts k in all partitions of n such that k does not divide n.
1
0, 0, 1, 1, 7, 3, 23, 15, 45, 45, 135, 35, 283, 230, 387, 355, 1049, 487, 1900, 1026, 2503, 2797, 5697, 1626, 8659, 8008, 12095, 9634, 24992, 9501, 39505, 25265, 48822, 51978, 81526, 30795, 143678, 121430, 173479, 110091, 320795, 151247, 472371, 318324, 477480
OFFSET
1,5
LINKS
FORMULA
a(n) = A006128(n) - A089251(n).
EXAMPLE
For n = 5 the partitions of 5 contain seven parts that do not divide 5 (see below):
----------------------------------
Partitions Partial
of 5 values
----------------------------------
5 .......................... 0
(4)+1 ...................... 1
(3)+(2) .................... 2
(3)+1+1 .................... 1
(2)+(2)+1 .................. 2
(2)+1+1+1 .................. 1
1+1+1+1+1+1 ................ 0
----------------------------------
Total 7
So a(5) = 7.
CROSSREFS
Sequence in context: A271573 A098231 A104716 * A213833 A282806 A283378
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 19 2013
EXTENSIONS
a(42)-a(45) from Alois P. Heinz, Jan 29 2013
STATUS
approved