login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209308 Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals. 10
1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

1/2^n and successive rows are

1,       1/2,   1/4,   1/8,  1/16,  1/32,   1/64, 1/128, 1/256,...

1/2,     1/2,   3/8,   1/4,  5/32,  3/32,  7/128,  1/32,...       = A000265/A075101, the Oresme numbers n/2^n. Paul Curtz, Jan 18 2013 and May 11 2016

0,       1/4,   3/8,   3/8,  5/16, 15/64, 21/128,...              = (0 before A069834)/new,

-1/4,   -1/4,     0,   1/4, 25/64, 27/64,...

0,      -1/2,  -3/4, -9/16, -5/32,...

1/2,     1/2, -9/16, -13/8,...

0,      17/8, 51/16,...

-17/8, -17/8,...

0

The first column is A198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,...  in A060096.

Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1, ... .

Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512, ... = -A075677/new, from Collatz problem.

There are three different Bernoulli numbers:

The first Bernoulli numbers are  1, -1/2, 1/6, 0,... = A027641(n)/A027642(n).

The second Bernoulli numbers are 1,  1/2, 1/6, 0,... = A164555(n)/A027642(n). These are the binomial transform of the first one.

The third Bernoulli numbers are  1,   0,  1/6, 0,... = A176327(n)/A027642(n), the half sum. Via A177427(n) and A191567(n), they yield the Balmer series A061037/A061038.

There are three different fractional Euler numbers:

1) The first are  1, -1/2, 0, 1/4, 0, -1/2,... in A060096(n).

Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... = A000225(n+1)/A000079(n) ).

2) The second are 1, 1/2, 0, -1/4, 0,  1/2,... , mentioned by Wolfdieter Lang in  A198631(n).

3) The third are  0, 1/2, 0, -1/4, 0,  1/2,... , half difference of 2) and 1).

Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... =  A000225(n)/A000079(n) ). See A097110(n).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5049

A. F. Horadam Oresme Numbers, Fibonacci Quarterly, 12, #3, 1974, pp. 267-271.

EXAMPLE

a(n)=

1,

2, 2,

1, 2,  4,

4, 4,  8,  8,

1, 4,  8,  4, 16,

2, 2,  1,  8, 32, 32,

1, 2,  4,  4, 16, 32,  64,

8, 8, 16, 16, 64, 64, 128, 128,

MATHEMATICA

max = 10; t[0, k_] := 1/2^k; t[n_, k_] := t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2013 *)

CROSSREFS

Cf. Second Bernoulli numbers A164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1), A272263.

Sequence in context: A098691 A035364 A261734 * A143808 A247495 A230290

Adjacent sequences:  A209305 A209306 A209307 * A209309 A209310 A209311

KEYWORD

nonn,frac,tabl

AUTHOR

Paul Curtz, Jan 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 23:29 EST 2016. Contains 278694 sequences.