login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209299 E.g.f.: 1 / Product_{n>=1} (cos(x^n/n) - sin(x^n/n)). 2
1, 1, 4, 16, 98, 650, 5492, 50468, 543252, 6375668, 83752144, 1191943168, 18563252968, 310499073352, 5598292885200, 107674197010960, 2208771882047120, 48025183073776016, 1105381958987588672, 26817991185065949440, 684717365565811694880, 18341702444087583851936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to: 1/Product_{n>=1} (cosh(x^n/n) - sinh(x^n/n)) = 1/(1-x).

Limit (a(n)/n!)^(1/n) = 4/Pi; the radius of convergence of the e.g.f. is Pi/4.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..300

FORMULA

a(n) ~ c * 2^(2*n+3/2) * n! / Pi^(n+1), where c = 1 / product_{n>=2} (cos((Pi/4)^n/n) - sin((Pi/4)^n/n)) = 2.516454534521990223577410114610797032290984895329... . - Vaclav Kotesovec, Nov 04 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 16*x^3/3! + 98*x^4/4! + 650*x^5/5! +...

where A(x) = 1/((cos(x)-sin(x)) * (cos(x^2/2)-sin(x^2/2)) * (cos(x^3/3)-sin(x^3/3)) * (cos(x^4/4)-sin(x^4/4)) * (cos(x^5/5)-sin(x^5/5)) *...).

MATHEMATICA

With[{nmax = 50}, CoefficientList[Series[1/Product[(Cos[x^n/n] - Sin[x^n/n]), {n, 1, 200}], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 03 2018 *)

PROG

(PARI) {a(n)=n!*polcoeff(1/prod(k=1, n, cos(x^k/k +x*O(x^n))-sin(x^k/k +x*O(x^n))), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A209298.

Sequence in context: A130683 A111976 A236772 * A091040 A029985 A114023

Adjacent sequences:  A209296 A209297 A209298 * A209300 A209301 A209302

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 05:26 EST 2019. Contains 319207 sequences. (Running on oeis4.)