PROOF OF CONJECTURE IN A209260

L. E. JEFFERY

The purpose of this note is to prove a conjecture stated by the author in Sloane's sequence A209260 [5] in The On-Line Encyclopedia of Integer Sequences [2]. The conjecture is restated below as Proposition 1, after some preliminaries.

Let $\mathbb{N}=\{1,2, \ldots\}$ be the set of natural numbers. For $r \in \mathbb{N} \cup\{0\}$, let $T(r)$ denote the r-th triangular number defined by $T(r)=\frac{r(r+1)}{2}$. The triangular numbers are the sequence $\{0,1,3,6,10,15, \ldots\}$ (Sloane's A000217 [3]).
Definition 1. Let $n \in \mathbb{N}$, and let S_{n} be the set

$$
\begin{aligned}
S_{n} & =\{\text { union of the first } n \text { rows of A209260 }\} \\
& =\bigcup_{\substack{m \in\{1, \ldots, n\} \\
k \in\{1, \ldots, m\}}} \operatorname{A141419}(m, k)
\end{aligned}
$$

of all entries in the first n rows of Sloane's sequence A141419 [4], with the entry in row m and column k defined by $\operatorname{A141419}(m, k)=T(m)-T(m-k)$.

The following lemma, conjectured by the author, is stated here separately since proof is based on one given by Charles R. Greathouse IV in [1].

Lemma 1. Let $n \in \mathbb{N}$. If $2 n+1$ is composite, and d and h are positive integers such that $2 n+1=d h$, with $1<d<2 n+1$, then $d+\frac{h-1}{2} \leq n$.

Proof. Suppose that $2 n+1$ is composite, and d and h are positive integers such that $2 n+1=d h$, with $1<d<2 n+1$. Clearly $\frac{h-1}{2} \leq \frac{n-1}{3}$, since $d \geq 3$. Therefore $d+\frac{h-1}{2} \leq \sqrt{2 n+1}+\frac{n-1}{3} \leq n$, as required.
Proposition 1. Let $n \in \mathbb{N}$. A necessary and sufficient condition for $2 n+1 \in S_{n}$ is that $2 n+1$ be composite.

Proof. Suppose that $2 n+1 \in S_{n}$. Then $2 n+1=T(m)-T(m-k)$, by the definition of S_{n}, or what is the same thing,

$$
\begin{equation*}
2 n+1=k\left(m-\frac{k-1}{2}\right), \tag{1}
\end{equation*}
$$

for some $m \in\{1, \ldots, n\}$ and $k \in\{1, \ldots, m\}$. If $k=1$, then $2 n+1=m<2 n+1$, a contradiction. Similarly, if $k=2$, then $2 n+1=2 m-1<2 n+1$, a contradiction. Hence $k \geq 3$, and we note that k cannot be a power of 2 , since $2 n+1$ is odd. Now in (1), if k is odd, then $m-\frac{k-1}{2}$ is a positive integer and necessarily odd. On the other hand, if k is even, then $k=2^{u}(2 v+1)$, say, for some $u, v \in \mathbb{N}$. However, only $u=1$ is possible since, for $u \geq 2$, the right side of (1) would be even, contradicting the fact that the left side is odd. Therefore, if k is even, then $k=2(2 v+1)$, so that $2 n+1=(2 v+1)(2 m-k+1)$ in which $2 m-k+1$ is positive and necessarily odd.

[^0]In either case, k even or odd, it follows that $2 n+1$ must be composite. ${ }^{1}$ Therefore it is a necessary condition that $2 n+1$ be composite.

Conversely, suppose that $2 n+1$ is composite. Then there are positive integers d and h such that $3 \leq d \leq h<2 n+1, d$ divides $2 n+1$, and $2 n+1=d h$. We have that $1<h-\frac{d-1}{2}<h+\frac{d-1}{2}$, and $2 n+1$ has representation as a sum of d consecutive positive integers of the form

$$
2 n+1=d h=\sum_{j=-\frac{d-1}{2}}^{\frac{d-1}{2}}(h+j),
$$

or equivalently, letting $M=h+\frac{d-1}{2}$,

$$
\begin{aligned}
2 n+1 & =\sum_{a=0}^{d-1}(M-a) \\
& =M+(M-1)+\cdots+(M-d+1) \\
& =M d-\frac{d(d-1)}{2} \\
& =\frac{M(M+1)}{2}-\frac{M(M+1)}{2}+M d-\frac{d(d-1)}{2} \\
& =\frac{M(M+1)}{2}-\frac{M(M+1)-2 M d+d(d-1)}{2} \\
& =\frac{M(M+1)}{2}-\frac{(M-d)(M-d+1)}{2} \\
& =T(M)-T(M-d) \\
& =\mathrm{A} 141419(M, d) .
\end{aligned}
$$

Since $M=h+\frac{d-1}{2} \leq n$, by Lemma 1 , we conclude that $2 n+1 \in S_{n}$. Therefore it is a sufficient condition that $2 n+1$ be composite. This completes the proof.

Acknowledgement. The author is grateful to Charles R. Greathouse IV for his contribution to this work and for granting permission to use his proof of Lemma 1.

References

[1] C. R. Greathouse IV, Personal communications, 2013.
[2] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[3] N. J. A. Sloane, https://oeis.org/A000217.
[4] N. J. A. Sloane, https://oeis.org/A141419.
[5] N. J. A. Sloane, https://oeis.org/A209260.
E-mail address, L. E. Jeffery: lejeffery2@yahoo.com

[^1]
[^0]: Date: January 18, 2013.

[^1]: ${ }^{1}$ Alternatively, since $k \notin\{1,2\}$ in the above argument, we note simply that $2 n+1$ cannot be a prime and $\in S_{n}$ simultaneously and so must be composite.

