This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209241 3^n times the expected value of the longest run of 0's in all length n words on {0,1,2}. 1
 0, 1, 6, 25, 92, 317, 1054, 3425, 10964, 34729, 109162, 341125, 1061132, 3288713, 10161666, 31318201, 96312696, 295632805, 905955146, 2772234385, 8472129040, 25861509393, 78861419302, 240252829461, 731313754312, 2224352781697 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is also the sum of length n words on {0,1,2} that have no runs of 0's of length >= i for i >= 1.  In other words, A000079 + A028859 + A119826 + A209239 + ... REFERENCES R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison and Wesley, 1996, Chapter 7. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA O.g.f.: Sum_{k=1..n} 1/(1-3x)-(1-x^k)/(1-3x+2x^(k+1)). a(n) = Sum_{k=1..n} A209240(n,k)*k. EXAMPLE a(2) = 6 because for such length 2 words: 00, 01, 02, 10, 11, 12, 20, 21, 22 we have respectively longest zero runs of length 2 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 = 6. MATHEMATICA nn=25; CoefficientList[Series[Sum[1/(1-3x)-(1-x^k)/(1-3x+2x^(k+1)), {k, 1, nn}], {x, 0, nn}], x] CROSSREFS Cf. A119706. Sequence in context: A099948 A277973 A143815 * A092491 A112308 A034336 Adjacent sequences:  A209238 A209239 A209240 * A209242 A209243 A209244 KEYWORD nonn AUTHOR Geoffrey Critzer, Jan 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 21:57 EDT 2019. Contains 328373 sequences. (Running on oeis4.)