

A209235


Rectangular array read by antidiagonals, with entry k in row n given by T(n,k) = 2^{k1}*Sum_{j=1..n} (cos((2*j1)*Pi/(2*n+1)))^{k1}.


2



1, 2, 1, 3, 1, 1, 4, 1, 3, 1, 5, 1, 5, 4, 1, 6, 1, 7, 4, 7, 1, 8, 1, 11, 4, 19, 16, 18, 1, 9, 1, 13, 4, 25, 16, 38, 29, 1, 10, 1, 15, 4, 31, 16, 58, 57, 47, 1, 11, 1, 17, 4, 37, 16, 78, 64, 117, 76, 1, 12, 1, 19, 4, 43, 16, 98, 64, 187, 193, 123, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

(Start) Array begins as
.1..1...1..1...1...1
.2..1...3..4...7..11
.3..1...5..4..13..16
.4..1...7..4..19..16
.5..1...9..4..25..16
.6..1..11..4..31..16 (End)
Antidiagonal sums: {1,3,5,9,16,26,46,78,136,...}.


LINKS

Table of n, a(n) for n=1..71.


FORMULA

T(n,k) = 2^{k1}*Sum_{j=1..n} (cos((2*j1)*Pi/(2*n+1)))^{k1}.
Empirical g.f. for row n: F(x) = (Sum_{u=0..n1} A122765(n,n1u)*x^u)/(Sum_{v=0..n} A108299(n,v)*x^v).
Empirical: odd column first differences tend to A000984 = {1, 2, 6, 20, 70, 252, ...} (central binomial coefficients).


CROSSREFS

Rows: cf. A000012, A000032, A094649, A189234, A216605, etc.
Cf. A185095, A186740.
Sequence in context: A178340 A173261 A084296 * A062534 A143349 A335123
Adjacent sequences: A209232 A209233 A209234 * A209236 A209237 A209238


KEYWORD

nonn,tabl


AUTHOR

L. Edson Jeffery, Jan 12 2013


STATUS

approved



