login
A209201
A lower bound on the number of the distinct maximum genus embedding of the complete bipartite graph K(n,n).
0
1, 0, 16, 0, 7739670528, 0, 137105941502361600000000000000, 0, 6990502336758588607110928994980286070521856000000000000000000, 0
OFFSET
1,3
COMMENTS
Theorem A, p. 3, of Dong.
LINKS
Guanghua Dong, Han Ren, Ning Wang, Yuanqiu Huang, Lower bound on the number of the maximum genus embedding of K_{n,n}, arXiv:1203.0855 [math.CO]
FORMULA
For n odd, a(n) = 2^((n-1)/2)*(n-2)!!^n*(n-1)!^n; otherwise a(n) = 0.
PROG
(PARI) a(n)=if(n%2, 2^(n\2)*prod(i=1, n\2, 2*i-1)^n*(n-1)!^n, 0) \\ Charles R Greathouse IV, Jun 19 2013
CROSSREFS
Cf. A000142 (factorial numbers), A001147 (double factorial numbers).
Sequence in context: A173436 A081263 A265491 * A050467 A008835 A040259
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Mar 06 2012
EXTENSIONS
Terms corrected by Charles R Greathouse IV, Jun 19 2013
STATUS
approved