login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209201 A lower bound on the number of the distinct maximum genus embedding of the complete bipartite graph K(n,n). 0
1, 0, 16, 0, 7739670528, 0, 137105941502361600000000000000, 0, 6990502336758588607110928994980286070521856000000000000000000, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Theorem A, p. 3, of Dong.

LINKS

Table of n, a(n) for n=1..10.

Guanghua Dong, Han Ren, Ning Wang, Yuanqiu Huang, Lower bound on the number of the maximum genus embedding of K_{n,n}, arXiv:1203.0855 [math.CO]

FORMULA

For n odd, a(n) = 2^((n-1)/2)*(n-2)!!^n*(n-1)!^n; otherwise a(n) = 0.

PROG

(PARI) a(n)=if(n%2, 2^(n\2)*prod(i=1, n\2, 2*i-1)^n*(n-1)!^n, 0) \\ Charles R Greathouse IV, Jun 19 2013

CROSSREFS

Cf. A000142 (factorial numbers), A001147 (double factorial numbers).

Sequence in context: A173436 A081263 A265491 * A050467 A008835 A040259

Adjacent sequences:  A209198 A209199 A209200 * A209202 A209203 A209204

KEYWORD

nonn,easy

AUTHOR

Jonathan Vos Post, Mar 06 2012

EXTENSIONS

Terms corrected by Charles R Greathouse IV, Jun 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 17:14 EDT 2020. Contains 337432 sequences. (Running on oeis4.)