This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209134 Triangle of coefficients of polynomials v(n,x) jointly generated with A209133; see the Formula section. 3
 1, 0, 4, 0, 4, 10, 0, 4, 18, 28, 0, 4, 26, 72, 76, 0, 4, 34, 132, 256, 208, 0, 4, 42, 208, 572, 864, 568, 0, 4, 50, 300, 1056, 2272, 2808, 1552, 0, 4, 58, 408, 1740, 4800, 8496, 8896, 4240, 0, 4, 66, 532, 2656, 8880, 20208, 30432, 27648, 11584, 0, 4, 74 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For a discussion and guide to related arrays, see A208510. As triangle T(n,k) with 0<=k<=n, it is (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 10 2012 LINKS FORMULA u(n,x)=u(n-1,x)+(x+1)*v(n-1,x), v(n,x)=2x*u(n-1,x)+2x*v(n-1,x), where u(1,x)=1, v(1,x)=1. T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 4 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Apr 10 2012 EXAMPLE First five rows: 1 0...4 0...4...10 0...4...18...28 0...4...26...72...76 First three polynomials v(n,x): 1, 4x, 4x + 10x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A209133 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A209134 *) CROSSREFS Cf. A209133, A208510. Sequence in context: A156732 A200341 A101980 * A281297 A058536 A154854 Adjacent sequences:  A209131 A209132 A209133 * A209135 A209136 A209137 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)