login
A209134
Triangle of coefficients of polynomials v(n,x) jointly generated with A209133; see the Formula section.
3
1, 0, 4, 0, 4, 10, 0, 4, 18, 28, 0, 4, 26, 72, 76, 0, 4, 34, 132, 256, 208, 0, 4, 42, 208, 572, 864, 568, 0, 4, 50, 300, 1056, 2272, 2808, 1552, 0, 4, 58, 408, 1740, 4800, 8496, 8896, 4240, 0, 4, 66, 532, 2656, 8880, 20208, 30432, 27648, 11584, 0, 4, 74
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 10 2012
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 4 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Apr 10 2012
EXAMPLE
First five rows:
1
0...4
0...4...10
0...4...18...28
0...4...26...72...76
First three polynomials v(n,x): 1, 4x, 4x + 10x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209133 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209134 *)
CROSSREFS
Sequence in context: A156732 A200341 A101980 * A281297 A058536 A371377
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 05 2012
STATUS
approved