|
|
A209084
|
|
a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.
|
|
3
|
|
|
0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016
|
|
REFERENCES
|
E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.
|
|
LINKS
|
Bruno Berselli, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (2,4).
|
|
FORMULA
|
a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021
|
|
MATHEMATICA
|
RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4], a, {n, 30}]
LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
|
|
PROG
|
(PARI) concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
(MAGMA) I:=[0, 4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
|
|
CROSSREFS
|
Cf. A063727, A033887, A085449, A103435, A134972, A269991.
Cf. A086344 (this sequence with signs).
Sequence in context: A149093 A149094 A086344 * A254216 A304940 A068205
Adjacent sequences: A209081 A209082 A209083 * A209085 A209086 A209087
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Seiichi Kirikami, Mar 06 2012
|
|
STATUS
|
approved
|
|
|
|