login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208977 Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n). 0
1, 2, 12, 86, 666, 5388, 44832, 380424, 3275172, 28512248, 250413856, 2215112886, 19711078686, 176276723508, 1583186541144, 14271487891512, 129063176166570, 1170480053359908, 10641805703955624, 96970507481607972, 885397365149468076, 8098908925136867112 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

FORMULA

G.f.: A(x) = sqrt( G(x)/(4 - 3*G(x)) ) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. [From a formula by Mark van Hoeij in A005810]

EXAMPLE

G.f.: A(x) = 1 + 2*x + 12*x^2 + 86*x^3 + 666*x^4 + 5388*x^5 +...

The square of the g.f. equals the g.f. of A005810:

A(x)^2 = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 +...

The g.f. of A002293 is G(x) = 1 + x*G(x)^4:

G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...

PROG

(PARI) {a(n)=polcoeff(sum(k=0, n, binomial(4*k, k)*x^k +x*O(x^n))^(1/2), n)}

for(n=0, 41, print1(a(n), ", "))

CROSSREFS

Cf. A005810, A002293.

Sequence in context: A052867 A226238 A179495 * A097237 A055531 A181345

Adjacent sequences:  A208974 A208975 A208976 * A208978 A208979 A208980

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 21:52 EST 2014. Contains 250123 sequences.