This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208977 Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n). 0
 1, 2, 12, 86, 666, 5388, 44832, 380424, 3275172, 28512248, 250413856, 2215112886, 19711078686, 176276723508, 1583186541144, 14271487891512, 129063176166570, 1170480053359908, 10641805703955624, 96970507481607972, 885397365149468076, 8098908925136867112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: A(x) = sqrt( G(x)/(4 - 3*G(x)) ) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. [From a formula by Mark van Hoeij in A005810] EXAMPLE G.f.: A(x) = 1 + 2*x + 12*x^2 + 86*x^3 + 666*x^4 + 5388*x^5 +... The square of the g.f. equals the g.f. of A005810: A(x)^2 = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 +... The g.f. of A002293 is G(x) = 1 + x*G(x)^4: G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +... PROG (PARI) {a(n)=polcoeff(sum(k=0, n, binomial(4*k, k)*x^k +x*O(x^n))^(1/2), n)} for(n=0, 41, print1(a(n), ", ")) CROSSREFS Cf. A005810, A002293. Sequence in context: A052867 A226238 A179495 * A097237 A055531 A181345 Adjacent sequences:  A208974 A208975 A208976 * A208978 A208979 A208980 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.