login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of constructable Golay sequences of length L.
2

%I #11 Nov 26 2020 22:25:05

%S 0,0,32,192,0,1408,1024,0,12544,9728,512,132608,94720,8192

%N Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of constructable Golay sequences of length L.

%C The definition sounds paradoxical: how can a(n) possibly be zero? The answer seems to be that a Golay sequence of length L can exist without being "constructable"! - _N. J. A. Sloane_, Nov 26 2020

%H Dragomir Z. Dokovic, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00034-X">Equivalence classes and representatives of Golay sequences</a>, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).

%Y Cf. A185064, A208924, A208926, A208927, A208928, A208929.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_, Mar 03 2012