login
A208925
Let L = A185064(n) be the n-th length for which a Golay sequence exists; a(n) = number of constructable Golay sequences of length L.
2
0, 0, 32, 192, 0, 1408, 1024, 0, 12544, 9728, 512, 132608, 94720, 8192
OFFSET
1,3
COMMENTS
The definition sounds paradoxical: how can a(n) possibly be zero? The answer seems to be that a Golay sequence of length L can exist without being "constructable"! - N. J. A. Sloane, Nov 26 2020
LINKS
Dragomir Z. Dokovic, Equivalence classes and representatives of Golay sequences, Discrete Math. 189 (1998), no. 1-3, 79-93. MR1637705 (99j:94031).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Mar 03 2012
STATUS
approved