login
Numbers n such that n == 1 (mod 4), n != 2, and |x^2+x-n| is 1 or a prime for all x in {1,...,sqrt(n)}.
0

%I #13 Jan 16 2015 10:42:33

%S 5,13,17,21,29,37,53,77,101,173,197,293,437,677

%N Numbers n such that n == 1 (mod 4), n != 2, and |x^2+x-n| is 1 or a prime for all x in {1,...,sqrt(n)}.

%H D. Byeon, and H. M. Stark, <a href="http://dx.doi.org/10.1006/jnth.2001.2729">On the finiteness of certain Rabinowitsch polynomials</a>, Journal of Number Theory, vol. 94, no. 1, pp. 219-221, 2002.

%H R. A. Mollin, <a href="http://dx.doi.org/10.1155/2009/819068">The Rabinowitsch-Mollin-Williams Theorem Revisited</a>, International Journal of Mathematics and Mathematical Sciences, 2009

%H R. A. Mollin, and H. C. Williams, <a href="http://projecteuclid.org/euclid.nmj/1118781121">On prime valued polynomials and class numbers of real quadratic fields</a>, Nagoya Mathematical Journal, vol. 112, pp. 143-151, 1988.

%H Shaoji Xu, <a href="http://m-hikari.com/ija/ija-2012/ija-1-4-2012/xushaojiIJA1-4-2012.pdf">On Euler Polynomials and Rabinowitsch Polynomials</a>, International Journal of Algebra, Vol. 6, 2012, no. 3, 123 - 134.

%K nonn,fini,full

%O 1,1

%A _N. J. A. Sloane_, Mar 02 2012