login
A208883
Numbers n such that n == 1 (mod 4), n != 2, and |x^2+x-n| is 1 or a prime for all x in {1,...,sqrt(n)}.
0
5, 13, 17, 21, 29, 37, 53, 77, 101, 173, 197, 293, 437, 677
OFFSET
1,1
LINKS
D. Byeon, and H. M. Stark, On the finiteness of certain Rabinowitsch polynomials, Journal of Number Theory, vol. 94, no. 1, pp. 219-221, 2002.
R. A. Mollin, The Rabinowitsch-Mollin-Williams Theorem Revisited, International Journal of Mathematics and Mathematical Sciences, 2009
R. A. Mollin, and H. C. Williams, On prime valued polynomials and class numbers of real quadratic fields, Nagoya Mathematical Journal, vol. 112, pp. 143-151, 1988.
Shaoji Xu, On Euler Polynomials and Rabinowitsch Polynomials, International Journal of Algebra, Vol. 6, 2012, no. 3, 123 - 134.
CROSSREFS
Sequence in context: A213340 A014539 A249034 * A182078 A074278 A087895
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Mar 02 2012
STATUS
approved