This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208772 Number of n-bead necklaces labeled with numbers 1..3 not allowing reversal, with no adjacent beads differing by more than 1. 4
 3, 5, 7, 12, 19, 39, 71, 152, 315, 685, 1479, 3294, 7283, 16359, 36791, 83312, 189123, 431393, 986247, 2262308, 5200851, 11985863, 27676615, 64034954, 148406243, 344507805, 800902879, 1864502926, 4346071603, 10142619039, 23696518919, 55420734752, 129742923475, 304014655205, 712985901943, 1673486556648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Allowing arbitrary differences between the first and last bead gives A215327. [Joerg Arndt, Aug 08 2012] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008. FORMULA a(n) = Sum_{ d | n } A215335(d). - Joerg Arndt, Aug 13 2012 a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124696(n). - Andrew Howroyd, Mar 18 2017 EXAMPLE All solutions for n=4: ..1....2....2....2....1....1....1....3....2....1....2....1 ..2....2....3....2....1....2....1....3....3....2....2....1 ..1....3....2....2....2....3....1....3....3....2....2....1 ..2....3....3....3....2....2....1....3....3....2....2....2 MATHEMATICA sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 3], {n, 1, 36}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *) PROG (PARI) /* from the Knopfmacher et al. reference */ default(realprecision, 99); /* using floats */ sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); vector(66, n, round(sn(n, 3)) ) /* Joerg Arndt, Aug 09 2012 */ CROSSREFS Column 3 of A208777. Cf. A215335 (cyclically smooth Lyndon words with 3 colors). Sequence in context: A241544 A208716 A195821 * A071810 A137576 A161329 Adjacent sequences:  A208769 A208770 A208771 * A208773 A208774 A208775 KEYWORD nonn AUTHOR R. H. Hardin, Mar 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.