login
A208724
Number of 2n-bead necklaces labeled with numbers 1..5 not allowing reversal, with neighbors differing by exactly 1.
3
4, 7, 12, 25, 52, 131, 316, 835, 2196, 5935, 16108, 44369, 122644, 341803, 956636, 2690845, 7596484, 21524543, 61171660, 174342217, 498112276, 1426419859, 4093181692, 11767920119, 33891544420, 97764131647, 282429537948, 817028472961, 2366564736724, 6863038218843
OFFSET
1,1
LINKS
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A198635(d) / 2. - Andrew Howroyd, Mar 18 2017
EXAMPLE
All solutions for n=3:
..4....1....3....2....1....2....3....1....2....3....1....2
..5....2....4....3....2....3....4....2....3....4....2....3
..4....1....3....2....3....4....3....3....2....5....1....4
..5....2....4....3....2....3....4....4....3....4....2....5
..4....3....3....2....3....4....5....3....4....5....1....4
..5....2....4....3....2....3....4....2....3....4....2....3
MATHEMATICA
a[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * (2*3^# + 2) &] / 2;
Array[a, 30] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
CROSSREFS
Column 5 of A208727.
Sequence in context: A299900 A373094 A215329 * A183336 A375314 A102953
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2012
EXTENSIONS
a(15)-a(30) from Andrew Howroyd, Mar 18 2017
STATUS
approved