login
Triangular array read by rows: n*binomial(n,n-k+1)-binomial(n-1,n-k) with k = 1..n, n >= 1.
4

%I #17 Sep 08 2022 08:46:01

%S 0,1,3,2,7,8,3,13,21,15,4,21,44,46,24,5,31,80,110,85,35,6,43,132,225,

%T 230,141,48,7,57,203,413,525,427,217,63,8,73,296,700,1064,1078,728,

%U 316,80,9,91,414,1116,1974,2394,2016,1164,441,99,10,111,560,1695

%N Triangular array read by rows: n*binomial(n,n-k+1)-binomial(n-1,n-k) with k = 1..n, n >= 1.

%C Mirror of A208656.

%e Triangle begins:

%e 0,

%e 1, 3,

%e 2, 7, 8,

%e 3, 13, 21, 15,

%e 4, 21, 44, 46, 24,

%e 5, 31, 80, 110, 85, 35,

%e 6, 43, 132, 225, 230, 141, 48,

%e 7, 57, 203, 413, 525, 427, 217, 63,

%e 8, 73, 296, 700, 1064, 1078, 728, 316, 80,

%e 9, 91, 414, 1116, 1974, 2394, 2016, 1164, 441, 99;

%e ...

%t z = 12;

%t f[n_, k_] := n*Binomial[n, k] - Binomial[n - 1, k - 1]

%t t = Table[f[n, k], {n, 1, z}, {k, 1, n}];

%t TableForm[t] (* A208656 as a triangle *)

%t Flatten[t] (* A208656 as a sequence *)

%t r = Table[f[n, k], {n, 1, z}, {k, n, 1, -1}];

%t TableForm[r] (* A208657 as a triangle *)

%t Flatten[r] (* A208657 as a sequence *)

%t Table[Sum[f[n, k], {k, 1, n}], {n, 1, 3 z}](* A208658 *)

%o (Magma) [n*Binomial(n,n-k+1)-Binomial(n-1,n-k): k in [1..n], n in [1..11]]; // _Bruno Berselli_, Apr 15 2015

%Y Cf. A002061 (second column), A208656, A208658 (row sums), A257055.

%K nonn,tabl,easy

%O 1,3

%A _Clark Kimberling_, Mar 01 2012