This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208648 Denominators of Pokrovskiy's lower bound on the ratio of e(G^n) the number of edges in the n-th power of a graph G, to E(G) the number of edges of G. 1
 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Numerators are A208647. The fractions begin: 1/2, 1/2, 7/4, 2/1, 2/1, 17/6, 3/1, 3/1, 31/8, 4/1, 4/1, 49/10, 5/1, 5/1, 71/12. LINKS Alexey Pokrovskiy, Edge growth in graph powers, arXiv:1202.6085v1 [math.CO], Feb 27, 2012. FORMULA If n == 0 (mod 3) then e(G^n)/e(G) = ((n+3)/3) - 3/(2*(n+3)); If n =/= 0 (mod 3) then e(G^n)/e(G) = ceiling(n/3). CROSSREFS Cf. A003417 (continued fraction for e), A208647. Sequence in context: A061462 A294334 A122578 * A005131 A105477 A226174 Adjacent sequences:  A208645 A208646 A208647 * A208649 A208650 A208651 KEYWORD nonn,easy,frac AUTHOR Jonathan Vos Post, Feb 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 08:16 EST 2018. Contains 317275 sequences. (Running on oeis4.)