%I #11 Jan 08 2013 11:16:22
%S 1,1,126,7572,1725819,705002611,396803649991,278635710716650,
%T 231474950997766763,219738417947792525211,232553597317851557785623,
%U 269396684883944249352055973,336839101974197524267892335361,449620757900366812848744648452561
%N Number of Young tableaux with 5 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
%C Also the number of (5*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (5,5,...,5) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
%Y Row n=5 of A208615.
%K nonn,walk
%O 0,3
%A _Alois P. Heinz_, Feb 29 2012