login
LCM of n and smallest nondivisor of n.
2

%I #28 Mar 13 2018 04:16:12

%S 2,6,6,12,10,12,14,24,18,30,22,60,26,42,30,48,34,36,38,60,42,66,46,

%T 120,50,78,54,84,58,60,62,96,66,102,70,180,74,114,78,120,82,84,86,132,

%U 90,138,94,240,98,150,102,156,106,108,110,168,114,174,118,420,122

%N LCM of n and smallest nondivisor of n.

%C a(n) = 2*n for all odd numbers.

%H Alois P. Heinz, <a href="/A208570/b208570.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Robert Israel_, May 20 2015: (Start)

%F a(n) = lcm(n, A007978(n)).

%F For primes p let nu_p(n) be the p-adic order of n.

%F a(n) = p * n where p is the prime that minimizes p^(1+nu_p(n)). (End)

%e a(6) = 12 because the divisors of 6 are 1,2,3,6; 4 is the smallest number not a divisor of 6; the LCM of 6 and 4 is 12.

%p a:= proc(n) local t;

%p for t from 2 do

%p if irem (n, t)<>0 then return ilcm(t, n) fi

%p od

%p end:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 13 2012

%t Table[LCM[n, Min[Complement[Range[n + 1], Divisors[n]]]], {n, 61}] (* _Ivan Neretin_, May 20 2015 *)

%o (Haskell)

%o a208570 n = lcm n $ a007978 n -- _Reinhard Zumkeller_, May 22 2015

%o (PARI) a(n) = {my(k=2); while(!(n % k), k++); lcm(n, k); } \\ _Michel Marcus_, Mar 13 2018

%Y Cf. A007978.

%Y Cf. A258115.

%K nonn

%O 1,1

%A _J. Lowell_, Feb 28 2012

%E More terms from _Alois P. Heinz_, Mar 13 2012