login
Triangle of coefficients of polynomials u(n,x) jointly generated with A208517; see the Formula section.
3

%I #5 Mar 30 2012 18:58:13

%S 1,1,1,1,2,3,1,3,6,7,1,4,9,15,17,1,5,12,24,39,41,1,6,15,34,66,100,99,

%T 1,7,18,45,98,178,256,239,1,8,21,57,135,276,478,653,577,1,9,24,70,177,

%U 395,772,1275,1661,1393,1,10,27,84,224,536,1145,2139,3383,4214

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A208517; see the Formula section.

%F u(n,x)=u(n-1,x)+x*v(n-1,x),

%F v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,

%F where u(1,x)=1, v(1,x)=1.

%e First five rows:

%e 1

%e 1...1

%e 1...2...3

%e 1...3...6...7

%e 1...4...9...15...17

%e First five polynomials u(n,x):

%e 1

%e 1 + x

%e 1 + 2x + 3x^2

%e 1 + 3x + 6x^2 + 7x^3

%e 1 + 4x + 9x^2 + 15x^3 + 17x^4

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208516 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208517 *)

%Y Cf. A208517.

%K nonn,tabl

%O 1,5

%A _Clark Kimberling_, Feb 28 2012