login
A208477
Difference between the sum of odd parts and the sum of even parts in all the partitions of n.
1
0, 1, 0, 5, 0, 11, 6, 25, 12, 50, 40, 96, 80, 173, 170, 320, 316, 545, 590, 930, 1020, 1552, 1760, 2537, 2900, 4066, 4736, 6450, 7540, 10045, 11856, 15482, 18280, 23555, 27920, 35461, 42032, 52805, 62662, 77955, 92380, 113963, 135040, 165295, 195540, 237866
OFFSET
0,4
LINKS
FORMULA
a(n) = A066967(n) - A066966(n).
G.f.: (Sum_{i>0} (2*i-1)*x^(2*i-1)/(1-x^(2*i-1))-2*i*x^(2*i)/(1-x^(2*i))) / Product_{j>0} (1-x^j). - Alois P. Heinz, Mar 10 2012
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1);
h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +h[1]*i*(2*(i mod 2)-1)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 10 2012
MATHEMATICA
Map[Total[Select[#, OddQ]] - Total[Select[#, EvenQ]] &[Flatten[IntegerPartitions[#]]] &, -1 + Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
max = 60; s = Sum[x^(2i) (x^(2i) - 2i (x-1) - 1)/(x + x^(4i) - (x+1) x^(2i) ), {i, 1, Floor[max/2]}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A291724 A340950 A156550 * A007392 A292105 A052401
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 10 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 10 2012
STATUS
approved